An Eulerian level set method for partial differential equations on evolving surfaces

نویسندگان

  • C. M. Elliott
  • Gerhard Dziuk
  • Charles M. Elliott
چکیده

In this article we define an Eulerian level set method for a partial differential equation on an evolving hypersurface Γ (t) contained in a domain Ω ⊂ R. The key idea is based on formulating the partial differential equations on all level set surfaces of a prescribed time dependent function Φ whose zero level set is Γ (t). The resulting equation is then solved in one dimension higher but can be solved on a fixed grid. In particular we formulate an Eulerian version of a scalar conservation law on Γ (t) and, in the case of a diffusive flux, derive an Eulerian transport and diffusion equation. Using Eulerian surface gradients to define weak forms of elliptic operators naturally generates weak formulations of elliptic and parabolic equations. The finite element method is applied to the weak form of the conservation equation yielding an Eulerian Evolving Surface Finite Element Method (EESFEM). The computation of the mass and element stiffness matrices are simple and straightforward. Numerical experiments are described which indicate the power of the method. We describe how this framework may be employed in applications. Gerhard Dziuk Abteilung für Angewandte Mathematik University of Freiburg Hermann-Herder-Straße 10 D–79104 Freiburg i. Br. Germany Tel.: +49 761-2035628 Fax: +49 761-2035632 E-mail: [email protected] Charles M. Elliott Department of Mathematics University of Sussex Falmer, Brighton BN1 9RF United Kingdom Tel.: +4

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Differential Equations applied to Medical Image ‎Segmentation

‎This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...

متن کامل

Eulerian finite element method for parabolic PDEs on implicit surfaces

We define an Eulerian level set method for parabolic partial differential equations on a stationary hypersurface Γ contained in a domain Ω ⊂ Rn+1. The method is based on formulating the partial differential equations on all level surfaces of a prescribed function Φ whose zero level set is Γ . Eulerian surface gradients are formulated by using a projection of the gradient in Rn+1 onto the level ...

متن کامل

An Eulerian approach to transport and diffusion on evolving implicit surfaces

In this article we define a level set method for a scalar conservation law with a diffusive flux on an evolving hypersurface Γ (t) contained in a domain Ω ⊂ Rn+1. The partial differential equation is solved on all level set surfaces of a prescribed time dependent function Φ whose zero level set is Γ (t). The key idea lies in formulating an appropriate weak form of the conservation law with resp...

متن کامل

Numerical Framework for Pattern-forming Models on Evolving-in-time Surfaces

In this article we describe a numerical framework for a system of coupled reaction-diffusion equations on an evolving-in-time hypersurface Γ. The proposed framework combines the level set methodology for the implicit description of the time dependent Γ, the Eulerian finite element formulation for the numerical treatment of partial differential equations and the flux-corrected transport scheme f...

متن کامل

An AFC-stabilized implicit finite element method for partial differential equations on evolving-in-time surfaces

In this article we present a new implicit numerical scheme for reactiondiffusion-advection equations on an evolving in time hypersurface Γ(t). The partial differential equations together with a level set equation φ are solved on a stationary quadrilateral mesh. The zero level set of the time dependent indicator function φ(t) implicitly describes the position of Γ(t). The dominating convective-l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007